Point-Line Minimal Problems
 in Complete Multi-View Visibility

Kathlén Kohn
University of Oslo \& ICERM
joint work with Timothy Duff (Georgia Tech),
Anton Leykin (Georgia Tech) \& Tomas Pajdla (CTU in Prague)

Reconstruct 3D scenes and camera poses from 2D images

Reconstruct 3D scenes and camera poses from 2D images

- Step 1: Identify common points and lines on given images

Reconstruct 3D scenes and camera poses from 2D images

- Step 1: Identify common points and lines on given images

- Step 2: Reconstruct coordinates of 3D points and lines as well as camera poses

Reconstruct 3D scenes and camera poses from 2D images

- Step 1: Identify common points and lines on given images

- Step 2: Reconstruct coordinates of 3D points and lines as well as camera poses

Reconstruct 3D scenes and camera poses from 2D images

- Step 1: Identify common points and lines on given images

- Step 2: Reconstruct coordinates of 3D points and lines as well as camera poses

We use calibrated perspective cameras:
each such camera is represented by a matrix $[R \mid t]$, where $R \in \mathrm{SO}(3)$ and $t \in \mathbb{R}^{3}$

5-Point-Problem

Given 2 images of 5 points, recover 5 points in 3D and both camera poses.

5-Point-Problem

Given 2 images of 5 points, recover 5 points in 3D and both camera poses.

This problem has 20 solutions over \mathbb{C}. (Given 2 images, a solution is 5 points in 3D and 2 camera poses.)

5-Point-Problem

Given 2 images of 5 points, recover 5 points in 3D and both camera poses.

This problem has 20 solutions over \mathbb{C}. (Given 2 images, a solution is 5 points in 3D and 2 camera poses.)
\Rightarrow The 5-Point-Problem is a minimal problem!

Another minimal problem

- Given: 3 images of 3 points on a line, 1 attached line and 1 free line
- Recover: 3D coordinates of 3 points and 3 lines, 3 camera poses

Another minimal problem

- Given: 3 images of 3 points on a line, 1 attached line and 1 free line
- Recover: 3D coordinates of 3 points and 3 lines, 3 camera poses

This problem has 40 solutions over \mathbb{C}. (solution $=3$ camera poses and 3D coordinates of points and lines)
\Rightarrow It is a minimal problem!

Minimal Problems

A Point-Line-Problem (PLP) consists of

- a number m of cameras,
- a number p of points,
- a number ℓ of lines,
- a set \mathcal{I} of incidences between points and lines.

Minimal Problems

A Point-Line-Problem (PLP) consists of

- a number m of cameras,
- a number p of points,
- a number ℓ of lines,
- a set \mathcal{I} of incidences between points and lines.

Definition

A PLP $(m, p, \ell, \mathcal{I})$ is minimal if, given m generic 2D-arrangements each consisting of p points and ℓ lines satisfying the incidences \mathcal{I}, it has a positive and finite number of solutions over \mathbb{C}.
(solution $=m$ camera poses and 3D coordinates of p points and ℓ lines satisfying the incidences \mathcal{I})

Minimal Problems

A Point-Line-Problem (PLP) consists of

- a number m of cameras,
- a number p of points,
- a number ℓ of lines,
- a set \mathcal{I} of incidences between points and lines.

Definition

A PLP $(m, p, \ell, \mathcal{I})$ is minimal if, given m generic 2D-arrangements each consisting of p points and ℓ lines satisfying the incidences \mathcal{I}, it has a positive and finite number of solutions over \mathbb{C}.
(solution $=m$ camera poses and 3D coordinates of p points and ℓ lines satisfying the incidences \mathcal{I})

Can we list all minimal PLPs? How many solutions do they have?

Minimal PLPs

m views	6	6	6	5	5	5	4	4	4	4	4	4	4
$p^{\mathrm{f}} p^{\mathrm{d}} l^{\mathrm{f}} l_{\alpha}^{\mathrm{a}}$	$1021{ }_{1}$	10133	10055	$2011{ }_{1}$	20032	20033	10300	1022_{2}	10144	10066	3001	2110	21021
(p, l, \mathcal{I})		$><$	$\begin{aligned} & W \\ & M \end{aligned}$	$\overline{0}$	1%			≥ 0	$\geqslant 6$	$\begin{aligned} & N / K \\ & \geqslant 1 \end{aligned}$			-1.
Minimal Degree	$\begin{gathered} \mathrm{Y} \\ >450 k^{*} \end{gathered}$	N	N	$\begin{gathered} \mathrm{Y} \\ 11306^{*} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 26240^{*} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 11008^{*} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 3040^{*} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 4524^{*} \end{gathered}$	N	N	$\begin{gathered} \mathrm{Y} \\ 1728^{*} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 32^{*} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 544^{*} \end{gathered}$
m views	4	3	3	3	3	3	3	3	3	3	3	3	3
$p^{\mathrm{f}} p^{\mathrm{d}} l^{\mathrm{f}} l_{\alpha}^{\mathrm{a}}$	2102	10400	10322	10244	$1016{ }_{6}$	10088	2021	20132	2013	20053	20054	20055	3010
(p, l, \mathcal{I})	∞			$\pm<$	$\begin{aligned} & N / K \\ & \end{aligned}$		$\overline{\sigma \beta}$		$0 / 1 /$	$1 / 1 / 1$	$1 / 1$	$0)^{1 / 2}$	
Minimal	Y	Y	Y	Y	N	N	Y	Y	Y	Y	Y	Y	Y
Degree	544*	360	552	480			264	432	328	480	240	64	216
m views	3	3	3	3	3	3	3	3	2	2	2	2	2
$p^{\mathrm{f}} p^{\mathrm{d}} l^{\mathrm{f}} l_{\alpha}^{\mathrm{a}}$	3002_{1}	30022	2111_{1}	2103_{1}	21032	21033	31000	2201	50002	41003	32003	32004	2300_{5}
(p, l, \mathcal{I})	$\phi \bullet \phi$	0				\cdots		0^{1}	$\bullet \bullet \bullet$		80°		
Minimal	Y	Y	Y	Y	Y	Y	Y	N	Y	Y	Y	N	N
Degree	312	224	40	144	144	144	64		20	16	12		

Joint camera map

> (3D-arrangement \quad, \quad cam $_{1}, \ldots$, cam $_{m}$)
> of p points and ℓ lines satisfying incidences \mathcal{I}

Joint camera map

$$
\left.\begin{array}{l}
\text { (3D-arrangement } \left.\quad, \quad \text { cam }_{1}, \ldots, \text { cam }_{m}\right) \longmapsto\left(2 \mathrm{D}-\text { arr }_{1}, \ldots, 2 \mathrm{D}\right. \text {-arr } \\
m
\end{array}\right)
$$

Joint camera map

Joint camera map

- $\mathbb{P}^{n}=n$-dimensional projective space
- $\mathbb{G}_{1, n}=\left\{\right.$ lines in $\left.\mathbb{P}^{n}\right\}=$ Grassmannian of lines in \mathbb{P}^{n}
- $\mathcal{X}=\left\{\left(X_{1}, \ldots, X_{p}, L_{1}, \ldots, L_{\ell}\right) \in\left(\mathbb{P}^{3}\right)^{p} \times\left(\mathbb{G}_{1,3}\right)^{\ell} \mid \forall(i, j) \in \mathcal{I}: X_{i} \in L_{j}\right\}$

Joint camera map

of p points and ℓ lines
satisfying incidences \mathcal{I}

- $\mathbb{P}^{n}=n$-dimensional projective space
- $\mathbb{G}_{1, n}=\left\{\right.$ lines in $\left.\mathbb{P}^{n}\right\}=$ Grassmannian of lines in \mathbb{P}^{n}
- $\mathcal{X}=\left\{\left(X_{1}, \ldots, X_{p}, L_{1}, \ldots, L_{\ell}\right) \in\left(\mathbb{P}^{3}\right)^{p} \times\left(\mathbb{G}_{1,3}\right)^{\ell} \mid \forall(i, j) \in \mathcal{I}: X_{i} \in L_{j}\right\}$
- $\mathcal{Y}=\left\{\begin{array}{c|c}\left(x_{1,1}, \ldots, x_{m, p}, I_{1,1}, \ldots, I_{m, \ell}\right) & \forall k=1, \ldots, m \\ \in\left(\mathbb{P}^{2}\right)^{m p} \times\left(\mathbb{G}_{1,2}\right)^{m \ell} & \forall(i, j) \in \mathcal{I}: x_{k, i} \in I_{k, j}\end{array}\right\}$

Joint camera map

\mathcal{X}
(3D-arrangement

C
$\left.\mathrm{cam}_{1}, \ldots, \mathrm{cam}_{m}\right) \longmapsto$
y
(2D-arr $1, \ldots, 2 \mathrm{D}-$ arr $\left._{m}\right)$ of p points and ℓ lines satisfying incidences \mathcal{I}

- $\mathbb{P}^{n}=n$-dimensional projective space
- $\mathbb{G}_{1, n}=\left\{\right.$ lines in $\left.\mathbb{P}^{n}\right\}=$ Grassmannian of lines in \mathbb{P}^{n}
- $\mathcal{X}=\left\{\left(X_{1}, \ldots, X_{p}, L_{1}, \ldots, L_{\ell}\right) \in\left(\mathbb{P}^{3}\right)^{p} \times\left(\mathbb{G}_{1,3}\right)^{\ell} \mid \forall(i, j) \in \mathcal{I}: X_{i} \in L_{j}\right\}$
- $\mathcal{Y}=\left\{\begin{array}{c|c}\left(x_{1,1}, \ldots, x_{m, p}, I_{1,1}, \ldots, I_{m, \ell}\right) & \forall k=1, \ldots, m \\ \in\left(\mathbb{P}^{2}\right)^{m p} \times\left(\mathbb{G}_{1,2}\right)^{m \ell} & \forall(i, j) \in \mathcal{I}: x_{k, i} \in I_{k, j}\end{array}\right\}$
$\bullet \mathcal{C}=\left\{\left(\left[R_{1} \mid t_{1}\right], \ldots\left[R_{m} \mid t_{m}\right]\right) \left\lvert\, \begin{array}{c}\forall i=1, \ldots, m: R_{i} \in \operatorname{SO}(3), t_{i} \in \mathbb{R}^{3}, \\ R_{1}=I_{3}, t_{1}=0, t_{2,1}=1\end{array}\right.\right\}$

- $\mathbb{P}^{n}=n$-dimensional projective space
- $\mathbb{G}_{1, n}=\left\{\right.$ lines in $\left.\mathbb{P}^{n}\right\}=$ Grassmannian of lines in \mathbb{P}^{n}
- $\mathcal{X}=\left\{\left(X_{1}, \ldots, X_{p}, L_{1}, \ldots, L_{\ell}\right) \in\left(\mathbb{P}^{3}\right)^{p} \times\left(\mathbb{G}_{1,3}\right)^{\ell} \mid \forall(i, j) \in \mathcal{I}: X_{i} \in L_{j}\right\}$
- $\mathcal{Y}=\left\{\begin{array}{c|c}\left(x_{1,1}, \ldots, x_{m, p}, I_{1,1}, \ldots, I_{m, \ell}\right) & \forall k=1, \ldots, m \\ \in\left(\mathbb{P}^{2}\right)^{m p} \times\left(\mathbb{G}_{1,2}\right)^{m \ell} & \forall(i, j) \in \mathcal{I}: x_{k, i} \in I_{k, j}\end{array}\right\}$
$\bullet \mathcal{C}=\left\{\left(\left[R_{1} \mid t_{1}\right], \ldots\left[R_{m} \mid t_{m}\right]\right) \left\lvert\, \begin{array}{c}\forall i=1, \ldots, m: R_{i} \in \mathrm{SO}(3), t_{i} \in \mathbb{R}^{3}, \\ R_{1}=I_{3}, t_{1}=0, t_{2,1}=1\end{array}\right.\right\}$

Lemma

If a PLP is minimal, then $\operatorname{dim}(\mathcal{X})+\operatorname{dim}(\mathcal{C})=\operatorname{dim}(\mathcal{Y})$.

Algebraic varieties

Definition

A variety is the common zero set of a system of polynomial equations.
A variety looks like a manifold almost everywhere:

Algebraic varieties

Definition

A variety is the common zero set of a system of polynomial equations.
A variety looks like a manifold almost everywhere:

Definition

A variety is irreducible if it is not the union of two proper subvarieties.

Algebraic varieties

Definition

A variety is the common zero set of a system of polynomial equations.
A variety looks like a manifold almost everywhere:

Definition

A variety is irreducible if it is not the union of two proper subvarieties.
The dimension of an irreducible variety is its local dimension as a manifold.

Algebraic varieties

Definition

A variety is the common zero set of a system of polynomial equations.
A variety looks like a manifold almost everywhere:

Definition

A variety is irreducible if it is not the union of two proper subvarieties.
The dimension of an irreducible variety is its local dimension as a manifold. \mathcal{X}, \mathcal{C} and \mathcal{Y} are irreducible varieties!

Deriving the big table

\mathcal{X}	\times	\mathcal{C}	\longrightarrow	\mathcal{Y}
(3D-arrangement of p points and ℓ lines with incidences \mathcal{I}			cam $_{1}, \ldots$, cam $\left._{m}\right)$	\longmapsto

Lemma

If a PLP is minimal, then $\operatorname{dim}(\mathcal{X})+\operatorname{dim}(\mathcal{C})=\operatorname{dim}(\mathcal{Y})$.

Deriving the big table

\mathcal{X}	\times	\mathcal{C}	\longrightarrow	\mathcal{Y}
(3D-arrangement of p points and ℓ lines with incidences \mathcal{I}			cam $_{1}, \ldots$, cam $\left._{m}\right)$	\longmapsto

Lemma

If a PLP is minimal, then $\operatorname{dim}(\mathcal{X})+\operatorname{dim}(\mathcal{C})=\operatorname{dim}(\mathcal{Y})$.

Theorem

- If $m>6$, then $\operatorname{dim}(\mathcal{X})+\operatorname{dim}(\mathcal{C}) \neq \operatorname{dim}(\mathcal{Y})$.

Deriving the big table

$\underset{\mathcal{X}}{ }$(3D-arrangement of p points and ℓ lines with incidences \mathcal{I}	\times	$\left.\operatorname{cam}_{1}, \ldots, \operatorname{cam}_{m}\right)$	\longmapsto	\longmapsto

Lemma

If a $P L P$ is minimal, then $\operatorname{dim}(\mathcal{X})+\operatorname{dim}(\mathcal{C})=\operatorname{dim}(\mathcal{Y})$.

Theorem

- If $m>6$, then $\operatorname{dim}(\mathcal{X})+\operatorname{dim}(\mathcal{C}) \neq \operatorname{dim}(\mathcal{Y})$.
- There are exactly 39 PLPs with $\operatorname{dim}(\mathcal{X})+\operatorname{dim}(\mathcal{C})=\operatorname{dim}(\mathcal{Y}):$

$\underset{\times}{\text { Deriving the big table }} \underset{\mathcal{C}}{ } \mathcal{Y}$

(3D-arrangement \quad, \quad cam $_{1}, \ldots$, cam $\left._{m}\right) \longmapsto\left(2 D-\right.$ arr $_{1}, \ldots, 2 \mathrm{D}$-arr ${ }_{m}$)
of p points and ℓ lines
satisfying incidences \mathcal{I}

Lemma

A PLP with $\operatorname{dim}(\mathcal{X})+\operatorname{dim}(\mathcal{C}) \neq \operatorname{dim}(\mathcal{Y})$ is minimal if and only if its joint camera map $\mathcal{X} \times \mathcal{C} \rightarrow \mathcal{Y}$ is dominant.

```
                    x
(3D-arrangement , cam}1,\ldots,\mp@subsup{\mathrm{ cam }}{m}{})\longmapsto(2D-arr 1,\ldots,2D-arr m)
of p points and \ell lines
satisfying incidences }\mathcal{I
```


Lemma

```
A PLP with \(\operatorname{dim}(\mathcal{X})+\operatorname{dim}(\mathcal{C}) \neq \operatorname{dim}(\mathcal{Y})\) is minimal if and only if its joint camera map \(\mathcal{X} \times \mathcal{C} \rightarrow \mathcal{Y}\) is dominant.
```


Definition

A map $\varphi: A \rightarrow B$ is surjective if for every $b \in B$ there is an $a \in A$ such that $\varphi(a)=b$.

Definition

A map $\varphi: A \rightarrow B$ is dominant if
for almost every $b \in B$ there is an $a \in A$ such that $\varphi(a)=b$.

$$
\underset{\mathcal{X}}{ } \quad \text { Deriving the big table }
$$

(3D-arrangement
of p points and ℓ lines
satisfying incidences \mathcal{I}

Lemma
A PLP with $\operatorname{dim}(\mathcal{X})+\operatorname{dim}(\mathcal{C}) \neq \operatorname{dim}(\mathcal{Y})$ is minimal if and only if
its joint camera map $\mathcal{X} \times \mathcal{C} \rightarrow \mathcal{Y}$ is dominant.

Definition

A map $\varphi: A \rightarrow B$ is surjective if for every $b \in B$ there is an $a \in A$ such that $\varphi(a)=b$.

Definition

A map $\varphi: A \rightarrow B$ is dominant if
for almost every $b \in B$ there is an $a \in A$ such that $\varphi(a)=b$.

Fact $A \operatorname{map} \varphi: A \rightarrow B$ between irreducible varieties A and B is dominant if and only if for almost every $a \in A$ the differential $D_{a} \varphi: T_{a} A \rightarrow T_{\varphi(a)} B$ is surjective.

```
                    x Deriving the big}\underset{\mathcal{C}}{\mathrm{ table }
(3D-arrangement , cam}1,\ldots,\mp@subsup{\mathrm{ cam }}{m}{})\longmapsto(2D-arr1, .., 2D-arr m)
of p}\mathrm{ points and }\ell\mathrm{ lines
satisfying incidences }\mathcal{I
```


Lemma

```
A PLP with \(\operatorname{dim}(\mathcal{X})+\operatorname{dim}(\mathcal{C}) \neq \operatorname{dim}(\mathcal{Y})\) is minimal if and only if its joint camera map \(\mathcal{X} \times \mathcal{C} \rightarrow \mathcal{Y}\) is dominant.
```


Definition

A map $\varphi: A \rightarrow B$ is surjective if for every $b \in B$ there is an $a \in A$ such that $\varphi(a)=b$.

Definition

A map $\varphi: A \rightarrow B$ is dominant if
for almost every $b \in B$ there is an $a \in A$ such that $\varphi(a)=b$.

Fact $A \operatorname{map} \varphi: A \rightarrow B$ between irreducible varieties A and B is dominant if and only if
for almost every $a \in A$ the differential $D_{a} \varphi: T_{a} A \rightarrow T_{\varphi(a)} B$ is surjective.
Can check this computationally! It is only linear algebra!

m views	6	6	6	5	5	5	4	4	4	4	4	4	4
$p^{\mathrm{f}} p^{\mathrm{d}} l^{\mathrm{f}} l_{\alpha}^{\mathrm{a}}$	1021_{1}	10133	10055	$2011{ }_{1}$	20032	20033	10300	1022_{2}	10144	10066	30011	2110_{0}	2102_{1}
(p, l, \mathcal{I})		$>0 \leq$	M / K	$\overline{0}$		0		$\geq<$	$\geqslant<$	$\begin{aligned} & 1 / 2 \\ & N / 1 \end{aligned}$			0ϕ
Minimal Degree	$\begin{gathered} \mathrm{Y} \\ >450 k^{*} \end{gathered}$	N	N	11306^{*}	26240^{*}	$\begin{gathered} \mathrm{Y} \\ 11008^{*} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 3040^{*} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 4524^{*} \end{gathered}$	N	N	$\begin{gathered} \mathrm{Y} \\ 1728^{*} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 32^{*} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 544^{*} \end{gathered}$
m views	4	3	3	3	3	3	3	3	3	3	3	3	3
$p^{\mathrm{f}} p^{\mathrm{d}} l^{\mathrm{f}} l_{\alpha}^{\mathrm{a}}$	21022	10400	10322	10244	$1016{ }_{6}$	$1008{ }_{8}$	$2021{ }_{1}$	20132	20133	20053	20054	20055	3010
(p, l, \mathcal{I})	∞		\geq	$\pm<$	$\begin{aligned} & N \\ & / 1 \\ & \hline \end{aligned}$	$\begin{aligned} & -W / / 2 \\ & \geq / / \mathbb{L} \end{aligned}$			$6 / 1 / 1$	$1 / 1 / 1$		$0 / \mu^{\prime \prime}$	$\bullet \bullet$
Minimal Degree	$\begin{gathered} \mathrm{Y} \\ 544^{*} \end{gathered}$	$\begin{gathered} Y \\ 360 \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 552 \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 480 \end{gathered}$	N	N	$\begin{gathered} \mathrm{Y} \\ 264 \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 432 \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 328 \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 480 \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 240 \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 64 \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 216 \end{gathered}$
m views	3	3	3	3	3	3	3	3	2	2	2	2	2
$p^{\mathrm{f}} p^{\mathrm{d}} l^{\mathrm{f}} l_{\alpha}^{\mathrm{a}}$	3002_{1}	30022	2111_{1}	2103_{1}	21032	21033	3100	2201	50002	41003	32003	32004	2300_{5}
(p, l, \mathcal{I})	$\text { \& }\rangle$	\rightarrow	∞^{-9}		$9 N_{0}$		0^{0}	0_{0}^{1}	$\bullet \bullet$	0_{0}^{0}	80°		$\circ^{\circ} 0^{\circ}$
Minimal	Y	Y	Y	Y	Y	Y	Y	N	Y	Y	Y	N	N
Degree	312	224	40	144	144	144	64		20	16	12		

- For $m \in\{2,3\}$: compute number of solutions with Gröbner bases (standard technique in algebraic geometry)

m views	6	6	6	5	5	5	4	4	4	4	4	4	4
$p^{\mathrm{f}} p^{\mathrm{d}} l^{\mathrm{f}} l_{\alpha}^{\mathrm{a}}$	1021_{1}	10133	10055	$2011{ }_{1}$	20032	20033	10300	1022_{2}	10144	10066	30011	2110_{0}	2102_{1}
(p, l, \mathcal{I})		$>0 \leq$	M / K	$\overline{0}$	1%	1		$\geq<$	$\geqslant<$	$\begin{aligned} & 1 / 2 \\ & N / 1 \end{aligned}$			$\bullet 9$
Minimal Degree	$\begin{gathered} \mathrm{Y} \\ >450 k^{*} \end{gathered}$	N	N	11306^{*}	26240^{*}	$\begin{gathered} \mathrm{Y} \\ 11008^{*} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 3040^{*} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 4524^{*} \end{gathered}$	N	N	$\begin{gathered} \mathrm{Y} \\ 1728^{*} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 32^{*} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 544^{*} \end{gathered}$
m views	4	3	3	3	3	3	3	3	3	3	3	3	3
$p^{\mathrm{f}} p^{\mathrm{d}} l^{\mathrm{f}} l_{\alpha}^{\mathrm{a}}$	21022	10400	10322	10244	$1016{ }_{6}$	10088	$2021{ }_{1}$	20132	20133	20053	20054	20055	3010
(p, l, \mathcal{I})	∞		\geq	$\pm<$	$\begin{aligned} & N / K \\ & \end{aligned}$	$\pm \mathbb{V} / /$				$1 / 1 / 1$		$0 / \mu^{\prime \prime}$	$\bullet \bullet$
Minimal Degree	$\begin{gathered} \mathrm{Y} \\ 544^{*} \end{gathered}$	$\begin{gathered} Y \\ 360 \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 552 \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 480 \end{gathered}$	N	N	$\begin{gathered} \mathrm{Y} \\ 264 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 432 \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 328 \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 480 \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 240 \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 64 \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 216 \end{gathered}$
m views	3	3	3	3	3	3	3	3	2	2	2	2	2
$p^{\mathrm{f}} p^{\mathrm{d}} l^{\mathrm{f}} l_{\alpha}^{\mathrm{a}}$	3002_{1}	30022	2111_{1}	2103_{1}	21032	21033	31000	2201	5000_{2}	41003	32003	32004	23005
(p, l, \mathcal{I})	$\text { \& }\rangle$	\rightarrow	∞^{-9}				0°	0_{0}^{1}	$\bullet \bullet$	0_{0}^{0}	80°		
Minimal	Y	Y	Y	Y	Y	Y	Y	N	Y	Y	Y	N	N
Degree	312	224	40	144	144	144	64		20	16	12		

- For $m \in\{2,3\}$: compute number of solutions with Gröbner bases (standard technique in algebraic geometry)
- For $m \in\{4,5,6\}$: compute number of solutions with homotopy continuation and monodromy (state-of-the-art method in numerical algebraic geometry)

Monodromy

XI - XI

Monodromy

- Pick random $\left(X_{0}, C_{0}\right) \in \mathcal{X} \times \mathcal{C}$
- Set $Y=\Phi\left(X_{0}, C_{0}\right)$
- Pick $Y^{\prime} \in \mathcal{Y}$

XI - XI

Monodromy

- Pick random $\left(X_{0}, C_{0}\right) \in \mathcal{X} \times \mathcal{C}$
- Set $Y=\Phi\left(X_{0}, C_{0}\right)$
- Pick $Y^{\prime} \in \mathcal{Y}$
- Along a random path from Y to Y^{\prime} track the solution $\left(X_{0}, C_{0}\right)$ for Y to a solution $\left(X_{0}^{\prime}, C_{0}^{\prime}\right)$ for Y^{\prime} via homotopy continuation

Monodromy

- Pick random $\left(X_{0}, C_{0}\right) \in \mathcal{X} \times \mathcal{C}$
- Set $Y=\Phi\left(X_{0}, C_{0}\right)$
- Pick $Y^{\prime} \in \mathcal{Y}$
- Along a random path from Y to Y^{\prime} track the solution $\left(X_{0}, C_{0}\right)$ for Y to a solution $\left(X_{0}^{\prime}, C_{0}^{\prime}\right)$ for Y^{\prime} via homotopy continuation
- Along a random path from Y^{\prime} to Y track the solution $\left(X_{0}^{\prime}, C_{0}^{\prime}\right)$ for Y^{\prime} to a solution $\left(X_{1}, C_{1}\right)$ for Y via homotopy continuation

Monodromy

- Pick random $\left(X_{0}, C_{0}\right) \in \mathcal{X} \times \mathcal{C}$
- Set $Y=\Phi\left(X_{0}, C_{0}\right)$
- Pick $Y^{\prime} \in \mathcal{Y}$
- Along a random path from Y to Y^{\prime} track the solution $\left(X_{0}, C_{0}\right)$ for Y to a solution $\left(X_{0}^{\prime}, C_{0}^{\prime}\right)$ for Y^{\prime} via homotopy continuation
- Along a random path from Y^{\prime} to Y track the solution $\left(X_{0}^{\prime}, C_{0}^{\prime}\right)$ for Y^{\prime} to a solution $\left(X_{1}, C_{1}\right)$ for Y via homotopy continuation
- Keep on circulating between Y and Y^{\prime}
 until no more solutions for Y are found

Monodromy

- Pick random $\left(X_{0}, C_{0}\right) \in \mathcal{X} \times \mathcal{C}$
- Set $Y=\Phi\left(X_{0}, C_{0}\right)$
- Pick $Y^{\prime} \in \mathcal{Y}$
- Along a random path from Y to Y^{\prime} track the solution $\left(X_{0}, C_{0}\right)$ for Y to a solution $\left(X_{0}^{\prime}, C_{0}^{\prime}\right)$ for Y^{\prime} via homotopy continuation
- Along a random path from Y^{\prime} to Y track the solution $\left(X_{0}^{\prime}, C_{0}^{\prime}\right)$ for Y^{\prime} to a solution $\left(X_{1}, C_{1}\right)$ for Y via homotopy continuation
- Keep on circulating between Y and Y^{\prime}
 until no more solutions for Y are found

Monodromy

- Pick random $\left(X_{0}, C_{0}\right) \in \mathcal{X} \times \mathcal{C}$
- Set $Y=\Phi\left(X_{0}, C_{0}\right)$
- Pick $Y^{\prime} \in \mathcal{Y}$
- Along a random path from Y to Y^{\prime} track the solution $\left(X_{0}, C_{0}\right)$ for Y to a solution $\left(X_{0}^{\prime}, C_{0}^{\prime}\right)$ for Y^{\prime} via homotopy continuation
- Along a random path from Y^{\prime} to Y track the solution $\left(X_{0}^{\prime}, C_{0}^{\prime}\right)$ for Y^{\prime} to a solution $\left(X_{1}, C_{1}\right)$ for Y via homotopy continuation
- Keep on circulating between Y and Y^{\prime}
 until no more solutions for Y are found

Monodromy

- Pick random $\left(X_{0}, C_{0}\right) \in \mathcal{X} \times \mathcal{C}$
- Set $Y=\Phi\left(X_{0}, C_{0}\right)$
- Pick $Y^{\prime} \in \mathcal{Y}$
- Along a random path from Y to Y^{\prime} track the solution $\left(X_{0}, C_{0}\right)$ for Y to a solution $\left(X_{0}^{\prime}, C_{0}^{\prime}\right)$ for Y^{\prime} via homotopy continuation
- Along a random path from Y^{\prime} to Y track the solution $\left(X_{0}^{\prime}, C_{0}^{\prime}\right)$ for Y^{\prime} to a solution $\left(X_{1}, C_{1}\right)$ for Y via homotopy continuation
- Keep on circulating between Y and Y^{\prime}
 until no more solutions for Y are found

m views	6	6	6	5	5	5	4	4	4	4	4	4	4
$p^{\mathrm{f}} p^{\mathrm{d}} l^{\mathrm{f}} l_{\alpha}^{\mathrm{a}}$	$1021{ }_{1}$	10133	10055	$2011{ }_{1}$	20032	20033	10300	1022_{2}	10144	10066	30011	2110_{0}	2102_{1}
(p, l, \mathcal{I})		$>\approx$	$\begin{aligned} & M \\ & M \end{aligned}$			\cdots		≥ 0	$\geqslant \leqslant$	$\begin{aligned} & N / 2 \end{aligned}$			- 1.
Minimal Degree	$\begin{gathered} \mathrm{Y} \\ >450 k^{*} \end{gathered}$	N	N	$\begin{gathered} \mathrm{Y} \\ 11306 * \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 26240^{*} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 11008^{*} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 3040^{*} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 4524^{*} \end{gathered}$	N	N	$\begin{gathered} \mathrm{Y} \\ 1728^{*} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 32^{*} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ 544^{*} \end{gathered}$
m views	4	3	3	3	3	3	3	3	3	3	3	3	3
$p^{\mathrm{f}} p^{\mathrm{d}} l^{\mathrm{f}} l_{\alpha}^{\mathrm{a}}$	21022	10400	10322	10244	$1016{ }_{6}$	10088	2021	20132	20133	20053	20054	20055	3010
(p, l, \mathcal{I})	\cdots		0	≥ 10	$\begin{aligned} & N \\ & / 1 \end{aligned}$	$\begin{aligned} & -W / / 2 \\ & \geqslant / / \mathbb{N} \end{aligned}$			$0 / 1 / 1$	$1 / 1 /$	$0 / 1$	$0)^{1 / 2}$	$\bullet \bullet$
Minimal	Y	Y	Y	Y	N	N	Y	Y	I	I	F	Y	I
Degree	544*	360	552	480			264	432	328	480	240	64	216
m views	3	3	3	3	3	3	3	3	2	2	2	2	2
$p^{\mathrm{f}} p^{\mathrm{d}} l^{\mathrm{f}} l_{\alpha}^{\mathrm{a}}$	30021	$3002{ }_{2}$	2111_{1}	2103_{1}	21032	21033	31000	22011	50002	41003	32003	32004	2300_{5}
(p, l, \mathcal{I})	$\phi \bullet\rangle$		e^{∞}			$0 / 16$	0°	0_{0}^{10}	$\bullet \bullet$		0°		
Minimal	Y	Y	Y	Y	Y	Y	Y	N	Y	Y	Y	N	N
Degree	312	224	40	144	144	144	64		20	16	12		

Thanks for your attention!

World projected

- world points: \mathbb{P}^{3} represented by vectors in \mathbb{F}^{4}
- world planes: $\left(\mathbb{P}^{3}\right)^{\vee}$ represented by vectors in \mathbb{F}^{4}
- camera: map $\mathbb{P}^{3} \rightarrow \mathbb{P}^{2}$ represented by a full rank $P \in \mathbb{F}^{3 \times 4}$
corresponding map

$$
\begin{gathered}
\left(\mathbb{P}^{2}\right)^{\vee} \rightarrow\left(\mathbb{P}^{3}\right)^{\vee} \text { for } \mathrm{l} \in \mathbb{F}^{3} \\
\mathrm{l} \mapsto P^{T} \mathrm{l}
\end{gathered}
$$

- calibrated camera: $P=[R \mid t]$ with $R \in S O(3)$ and $t \in \mathbb{F}^{3}$

Common point (CP) constraint

$\operatorname{det}\left[\begin{array}{llll}P_{1}^{T} \mathbf{l}_{1}^{(1)} & P_{1}^{T} \mathbf{l}_{2}^{(1)} & P_{2}^{T} \mathbf{l}_{1}^{(2)} & P_{2}^{T} \mathbf{l}_{2}^{(2)}\end{array}\right]=0$.
Note: more cameras and/or more lines through the point of intersection result in a matrix with 4 rows and more columns that is rank deficient.

Line correspondence (LC) constraint

 $\operatorname{rank}\left[\begin{array}{lll}P_{1}^{T} 1^{(1)} & P_{2}^{T} 1^{(2)} & \left.P_{3}^{T} 1^{(3)}\right]\end{array} \leq 2\right.$